Conservation Laws of Three-Dimensional Perfect Plasticity Equations under von Mises Yield Criterion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

A Study on Combination of von Mises and Tresca Yield Loci In Non-Associated Viscoplasticity

In this study a non-associated viscoplastic flow rule (NAVFR) with combining von Mises and Tresca loci in place of yield and plastic potential functions and vice verse is presented. With the aid of fully implicit time stepping scheme and discussing the other studies on plastic potential flow rules and also experimental results it is shown that the proposed NAVFR can be adopted to forecast the e...

متن کامل

A Three-Dimensional, Unsplit Godunov Method for Scalar Conservation Laws

Linear advection of a scalar quantity by a specified velocity field arises in a number of different applications. Of particular interest here is the transport of species and energy in low Mach number models for combustion, atmospheric flows, and astrophysics, as well as contaminant transport in Darcy models of saturated subsurface flow. An important characteristic of these problems is that the ...

متن کامل

Finite-volume Weno Schemes for Three-dimensional Conservation Laws

The purpose of this paper is twofold. Firstly we carry out an extension of the finite-volume WENO approach to three space dimensions and higher orders of spatial accuracy (up to eleventh order). Secondly, we propose to use three new fluxes as a building block in WENO schemes. These are the one-stage HLLC [29] and FORCE [24] fluxes and a recent multistage MUSTA flux [26]. The numerical results i...

متن کامل

Characteristics of Conservation Laws for Difference Equations

Each conservation law of a given partial differential equation is determined (up to equivalence) by a function known as the characteristic. This function is used to find conservation laws, to prove equivalence between conservation laws, and to prove the converse of Noether’s Theorem. Transferring these results to difference equations is nontrivial, largely because difference operators are not d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/702132